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Synthesis of a Propella[4,]prismane with Averaged S, Symmetry
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The synthesis of the title compound 7 has been achieved by irradiation of the
fourfold bridged tricyclo[4.2.0.0z’s]octa-3,7-diene 6; the latter species was
prepared by the AICl; supported dimerization of cyclododeca-1,7-diyne.
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If one connects all adjacent positions of cubane by, say hydrocarbon chains of equal length », one can

construct two isomeric propellafny|prismanes with Dy, or S, symmetry.1
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One member of the D, family has been synthesized by irradiation of the fourfold bridged
tricyclo[4.2.0.0%*Jocta-3,7-diene derivative 12
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To derive a member of the S, family we have followed a related protocol. Starting with cyclododeca-1,7-

diyne (4) we have used AICl; to form the intramolecular cyclobutadiene-c-complex 5 as intermediate

which, when treated with DMSO at -78 °C, dimerizes to syn-1,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-
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8b,12b- butanobenzo[3’,4’]cyclobuta[1’,2’:3,4]cyclobuta [1,2-e]biphenylene (6). This reaction relies on

the work by the groups of Schiifer,” Koster™ and Hogeveen™ and has been used lately to prepare Dewar

benzenes.*
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An alternative path to 6 has been reported by Wittig and Mayer.’ The structural assignment of 6 is based
mainly on its spectroscopic properties. In the '*C NMR spectrum one finds two signals for the quarternary
carbons (& = 49.2, 48.0) and two signals for the sp2 carbon centers (5 = 144.0, 137.7).° We were also able
to grow single crystals of 6. Due to disorder we were unable to elucidate detailed structural parameters.

However, the configuration of 6 could be confirmed without any doubt.”

Scheme 3
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The irradiation of 6 with a mercury high pressure lamp in pentane at 20 °C and subsequent separation by
column chromatography (silica gel) affords the propella[4,]prismane (S,) (7) in
1 - 2% yield. Furthermore the compounds 8 - 11 could be isolated in 6, 8, 5 and 22 % yield, respectively.

The structure of 7 is based on its spectroscopic properties,’ which are similar to those of 2 and octamethyl



cubane'® and on its supposed mechanism of formation, a [2+2] cycloaddition. The >C NMR spectrum of
7 shows one signal (6 = 50.0) for the quarternary carbons and two signals (8 = 23.1, 19.8) for the
methylene groups. The structures of 8 - 11 are assumed by comparison of their spectroscopic data® with
those of the products of the analogous irradiation of syn-octamemyltricyclo[él.2.0.02‘5]0cta-3,7-diene.7‘]°
The light induced [2+2] cycloaddition of 6 to 7 was hoped for but was not anticipated in view of several
reports in the literature which state that syn-txicyclo[4.2.0.02‘5]0cta-3,7-diene and its octamethyl derivative
did neither give the corresponding cubane nor show any photoreaction." Our recent studies on syn-
octamethyltricyclo[4.2.0.0z’s]octa-3,7-diene showed however, that a rich photochemistry occurs under
certain conditions.'’

The geometrical parameters of 7 have been calculated by using the ab initio procedure (RHF/3-21 G
basis). A structure with averaged S, symmetry is predicted. The most stable conformer shows D,
symmetry with a half chair conformation of the tetramethylene chains.

These experiments reveal a considerable difference in the photochemistry of 1 and 6. The irradiation of 1
yields only to two products (2, 3), while the irradiation of 6 gives rise to at least five substances.
Moreover, the yields of the formal [2+2]cycloaddition products are 10% for 2 but only 1.5% for 7.

We ascribe these variations to the different ways the double bonds of the tricyclo[4.2.0.02’5]octa-3,7-diene
unit in 1 and 6 are bridged. The bridging of centers 3 - 8 and 4 - 7 in 1 tightens not only the distance
between the double bonds (ca. 2.7 A) and makes the tricyclo[4.2.0.02’5]octa-3,7-diene skeleton rather
rigid, it also changes drastically the electronic structure of the cage. As discussed elsewhere'”'" the
sequence of the frontier orbitals in 1 is predicted to be n° on top of n', just the opposite as in
tricyclo[4.2.0.02’5]octa-3,7-diene and its alkyl derivatives.

In 6 the bridging of the 2 - 3, 4 - 5 and 7 - 8 positions neither influences the rigidity of the skeleton
considerably nor does it reduce the distance between the double bonds (ca. 3.0 A). As a result the
sequence of the m-orbitals of 6 is predicted to be the same as in the parent system and in the octamethyl
congener.

A second point which has to be considered in understanding the difference in reactivity of 1 and 6 is the
observation that 6, like the parent system, rearranges under thermal conditions to the corresponding
bicyclo[4.2.0]octa-2,4,7-triene system.s’7 Such an intermediate could never be found during irradiation of
1

These points support the view that the photochemistry of 6 resembles very much that of

8,10

octamethyltricyclo[4.2.0.0z’s]octa-3,7-diene while 1 chooses a different reaction channel.
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